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The size of a conical cavity characterizing the start of boiling is estimated on 
the basis of analyzing the stability of a nucleus of vapor in such a cavity. 

A rather important problem in physics of boiling processes is the growth and the break- 
away size of bubbles forming on the heater during boiling. This problem is directly involved 
with determining the dimensions of microcavities, which constitute active centers of boiling. 

Usually there appear various kinds of nonuniformities on the heating surface. For the 
sake of simplicity, we will assume that the surface is "covered" with conical cavities, where 
half the vertex angle ~ ranges from 0 to 90 ~ and some mean depth h depends on the class of 
surface finish. 

It is well known that the ability of a cavity to reliably retain gas which serves as 
nucleus of the vaporous phase is the indicator of such a cavity's activity. For cavity to be 
an active center requires, furthermore, a certain temperature head AT = TL--T s. The relation 
between AT and the radius r c of the cavity rim is [i] 

r~ = 2 a T J ( L g " A T ) .  (1) 

It must be noted here that estimating r c according to relation (i) is difficult, because of 
the difficulty of determining T L. For this reason, one usually deals with the temperature T H 
on the heater rather than with the temperature T L. Experiments [i] have confirmed the validi- 
ty of such a substitution under conditions of uniform heating of the liquid and its tempera- 
ture being equal to that of the heater. Under real conditions of heat supply from the heater 
surface to the liquid, however, the temperature difference TH--T s measured in an experiment 
differs from the quantity TL--T s calculated according to relation (i) with r c known (in [I], 
these two temperature differences were ii.i and 1.7~ respectively). This is attributable 
to the existence of a boundary layer of liquid, in which the temperature drops from T H at the 
heater to T s at some distance characterizing the thickness of this boundary layer. Taking 
the thickness of this boundary layer into account [2] makes it possible to correctly deter- 
mine r c from the measured T H temperature. One can apparently assume that in the first ap- 
proximation r c and gT =ITH--T s are related through the equality 

r~ = 2 B a T J ( L g " 6 T ) ,  (2) 

with the empirical factor B having any value from i0 to 20 [3]. 

We will also note that on the left-hand side of equality (I) there should appear romin , 
the smallest radius of curvature at the vertex of a bubble which the latter has during its 
growth. It has been assumed in [i] that the surface of a bubble constitutes a part of a 
sphere with a radiug which varies in time and with a wetting angle ~ of 90 ~ , the radius of the 
sphere becoming minimum when the free surface of the bubble rests on the rim of the cavity so 
as to form a half-sphere, i.e., when romin = r c. 

We will now determine whether the last equality is valid without the assumptions [i] 
about the sphericity of the free surface and about ~ = 90 ~ . For this purpose we will examine 
the evolution of the exact shape of a bubble during its slow growth up to breakaway [4-6], 
beginning from the instant of time when the base of the bubble coincides with the rim of the 
cavity. We introduce the dimensionless quantity R c = rcbl/2 with b = Apg/a. It follows from 
data on the evolution of the exact shape of a bubble that as soon as 84 90 ~ and R c< 0.92, 
a bubble resting on the rim of a cavity will intersect a plate at a 90 ~ angle for the first 
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Fig. i. Schematic di- 
agram of bubble growth 
in a conical cavity. 
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Fig. 2. Radius rc (mm) of active cavity at small Wetting 
angles e (ang. deg): i) He; 2) H20; 3) 02; solid lines cor- 
respond to Class 7 surface finish (GOST 2789-73), dashed 
lines correspond to Class i0 surface finish. 

Fig. 3. Radius of active cavity in water within e = 20-45 ~ 
range. 

time during its growth. The position of the bubble will then be stable. If R c< 0.82, its 
radius of curvature at the vertex will then be the minimum one during its entire growth 

] 2 period. The ratio rc/r0min is 1.14 for R c = 0.82 and, being equal to (|+~Rc) [7], approaches 

unitv as R decreases. Considering thatR c <0.82 for an activevapor nucleating center, one can re- C 
gard relation (i) as a valid one for 8-~<90 ~ 

It follows from relation (i) that boiling will start earlier (at a smaller AT) on a 
larger cavity if the latter is capable of reliably retaining gas. However, this condition is 
less likely to be satisfied by large cavities. Therefore, determining the size of an active 
cavity requires knowing the maximum size of a cavity still capable of retaining gas. We 
will, accordingly, examine the stability of a gaseous bubble in a conical cavity. 

A gaseous bubble deforms during its slow growth in a conical cavity so that its wetting 
angle e and thus also angle a = ~/2--~+0 (Fig. l) will remain constant. Loss of stability 
occurs at the instant when an inflection point appears on the generatrix of the free bubble 
surface (which coincides with the corresponding equilibrium surface) [8]. 

We will consider only large angles ~, since profilograms of solid surfaces [9] indicate 
that depressions are nearly conical with angles ~ = 80-90 =, When ~ is large and e is small, 
then ~ is also small. When ~ is small, then R(zrb 1/2) = R, at the inflection point can be 

calculated from the relation R. ~- si~ [7]. In the stability-wise critical situa- 

tion the inflection point is the point of contact with the solid surfacer so that, letting 
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TABLE i. Theoretical and Experimental Values of Breakaway 

Radii of Bubbles and of Active Cavities during Boiling of 

Cryogenic Liquids 

I0 

0 

7 

~ l  1 0 o  7 

3,34 
2,85 
1,76 
1,18 
1,75 
1,40 
1,23 
0,90 
2,12 
1,57 
2,21 
1,70 

0,15 
0,15 
0,135 
0,12 

0,26 
0,21 
0,i7 
0,145 
0,15 
0,12 
0,10 

0,135 

~ o  

3,22 
3,09 
2,98 
2,97 

12,45 
12,02 
11,80 
11,59 
3, 15 
3,07 
3,05 

12,5 

0,16 
0,16 
0,15 
0,14 
0,26 
0,24 " 
0,235 
0,225 

0,16 
O, 155 
0,15 

0,25 . 

o 

0,40 2,34 
0,24 2,80 
0,24 2,26 
0,24 1,64 
0,76 12,10 
0,49 7,71 
O, 34 4,52 
0,31 3,13 
O, 35 2,52 
O, 32 1,45 
0,17 0,96 

0,44 1,84 

< 

o 

5,85 
11,67 
9,42 
6,85 

15,92 
15,73 
13,35 
10,10 
7,2 
4,53 
5,65 
4,18 

R c = R , ,  one  c a n  c a l c u l a t e  t h e  c r i t i c a l  r a d i u s  o f  a c o n i c a l  c a v i t y  as  B e =  - ~  c o s - ( ~ - - 0 ) .  

The dimensionless depth H = hb I/2 of a critical cavity is determined by the relation H = 
R c cot 4. Upon eliminating the quantity ~ from the relations for R c and H, we finally obtain 

 o 0+   0:217 } �9 ( 3 )  

The graphs in Figs. 2, 3 depict the relation rc(8) for helium, oxygen, and water. The surface 
finish here corresponds to Class 7 and Class i0, respectively. From the known class of sur- 
face finish, i.e., known magnitude of R, one can now determine H for a given liquid and from 
relation (3) determine the limiting radii of active cavities. An analysis of relation (3) 
suggests that improvement of the surface finish results in a smaller radius of an active 
cavity and, consequently, a larger temperature difference AT for boiling start (according to 
relation (i)), which has been confirmed in practice. A decrease of 8 and o or an increase of 
g has a similar effect on r c. In the latter case (increase of g) r c must decrease by a fac- 
tor of ~, where n is the overload factor. 

Sizes of bubbles and active cavities in cryogenic liquids are given in Table i. The ex- 
perimental data on breakaway radii r d of bubbles in the given liquids as well as on heater 
surface finish, pressures, and temperature drops 8T have been taken from another study [i0]. 
In two columns following one another are given theoretical values of r c (here e = 0 ~ based 
on relation (3), and corresponding values of r d based on the relation [5] 

r d = 1.104 V'rdb. ( 4 )  

The data in Table 1 indicate that breakaway sizes determined according to the method 
proposed here represent the upper bound of experimentally determined ones. They are less de- 
pendent on the pressure than actually observed in experiments, which can have some effect on 
the evaluation of dynamic forces. The data in the last three columns can be used for calcu- 

! 
lating the factor B in expression (2). First r c = r c was calculated according to expression 
(i), with 5T = ~T. Then rc,ex p was calculated according to expression (4) and with the use 
of rd,ex p. The factor B was calculated as the ratio B = rc,exp/r ~. 

We will now examine the law of bubble growth, i.e., the relation r = BT n. When a bubble 

grows so that gas flows into it at a constant rate, then the bubble volume is a linear func- 
tion of time [ii] and n = 1/3. In real bubbling, however, n has been found to sometimes dif- 
fer from 1/3, and in the case of boiling -- to depend on the pressure [i0] with its mean value 
close to 1/2. This means that gas (vapor) does not flow into a bubble at a constant rate. 

Let us examine the bubble growth when the rate of gas flow is controlled by pressure 
changes in the bubble. Let a bubble form when gas is discharged through a hole of radius r c. 
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Fig. 4. Dependence of power exponent 
n in bubble-growth law on radius of 
active cavity: i) 02 boiling [i0]; 
2) 02 boiling at 0.02 ~ D ~ 1 [3]; 3) 
N2 boiling [i0]; 4) H2 boiling [15]; 
5) H20 bubbling; 6) N2 bubbl~ng. 

The gas leaves a vessel in which a constant pressure p: is maintained. As the bubble slowly 
grows, the pressure p~ inside it will vary according to the relation 

P 2 = A P 0 + p ' g l + p ,  l=lo--li(v). (5)  

I n  t h i s  c a s e  t h e  f l o w  r a t e  Q o f  g a s  d i s c h a r g e d  t h r o u g h  t h e  h o l e  c a n  b e  e s t i m a t e d  o n  t h e  b a s i s  
of the relation [12] 

-- l\Hl l 

Using the results of another study [4], where Apo and Zz have been determined as func- 
tions of the volume v for 0.02 ~rc~-~0.5 , as well as the relations Apo(v) and Iz(v) es- 
tablished for 0.001 ~rc~-b-~0.02 on the assumption of a spherical bubble, we obtain from re- 
lations (5), (6) the relations Q = ~(v) with r c = const. Integrating Q = dv/dT yields the 
volume v as a function of time, and, in turn, this relation determines both the exponent n 
and the coefficient 8. The radius of a bubble can then be expressed through its volume v as 
r=3~, 

It is to be noted that the trend of the Apo(v) curves depends largely on the value of R c 
[4]. When R c is small, then the function Apo(v) ascends steeply to some maximum and then 
descends until stability is lost. As R c increases, the range of increasing Apo widens, and 
at some sufficiently large R c the loss of stability occurs before Apo begins to decrease. 
Calculations have been made for small R c values (Rc~0.5) in the range of decreasing pressure. 
It has been found that n depends on R c only (8 depends on the other parameters) and lies with- 
in 0.4~ n~ 0.45 for R c within the 0.001-0.5 range, becoming larger as R c increases. 

Studies of boiling of cryogenic liquids have revealed that an increase of pressure causes 
a decrease of the exponent n in the quasistatic mode of bubble growth [I0]. We will draw an 
analogy between the growth of a vapor bubble in a cavity of radius r c and the growth of a gas 
bubble during bubbling at a hole of the same radius. For this we have to evaluate the~es- 
sure dependence of R c. Using the pressure dependence of the dimensionless complex OTs~b/Lp" , 
determined by the properties of the liquid and its vapor, and using the pressure dependence of 
AT determined experimentally for oxygen [I0], hydrogen [13], and water [14], we obtain from 
relation (i) the sought relation for R c. This relation is Rc~P-Y, with y = 0.97, 1.41, and 
1.75 for hydrogen, oxygen, and water, respectively. One may propose that this experimentally 
observed decrease of n with increasing pressure is a consequence of the decrease of the radius 

R c of an active cavity. 

The calculated values of the exponent n were checked experimentally in bubbling tests. 
The liquids used there were water and liquid nitrogen. The experimental data, along with the 
results of theoretical calculations, are shown in Fig. 4. On the same diagram are also shown 
data on boiling of nitrogen and oxygen [i0], hydrogen [15], and oxygen at 0.02 ~q ~i [3]. 
These results suggest that the bubble growth during bubbling as well as during boiling in the 
quasistatic mode is determined by the pressure drop and that the observed pressure dependence 
of the power exponent n manifests the pressure dependence of the breakaway size of bubbles in 
the quasistatic mode. 

NOTATION 

h, H, dimensional and dimensionless depth of a conical cavity; ~, half the vertex angle 
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of a conical cavity; rc, Rc, dimensional and dimensionless radius of the cavity base; r0min , 
minimum radius of curvature at the cavity vertex; R, dimensionless radius of a bubble; R,, 
dimensionless critical radius of a conical cavity; rd, breakaway radius of a bubble; rd,exp, 

V experimentally determined breakaway radius of a bubble; rc, radius of a cavity according to 
relation (i); rc,exp, radius of a cavity determined from rd,exp; TL, mean temperature of the 
liquid at the bubble surface; Ts, saturation temperature; TH, temperature at the heater; 
AT = TL--Ts; 6T = TH--Ts; e, wetting angle; o, coefficient of surface tension; L, latent heat 
of evaporation; p", density of the gas (vapor); Ap, difference between density of liquid and 
density of vapor; Pl, density of the gas under pressure p:; g, gravitational acceleration; 
~, angle of inclination (to the horizontal) of a tangent to the bubble surface; ~, overload 
factor; B, B, coefficients; ~, time; n, Y, power exponents; Apo, magnitude of the Laplace 
pressure at the tip of a bubble; p, gas pressure over the liquid surface; p~, pressure inside 
the vessel from gas flows through bubbling hole; p2, pressure in a bubble; l, height of the 
liquid column above a bubble; lo, level of the liquid in the vessel; ZI, height of a bubble; 
v, volume of a bubble; Q, gas flow rate; k = Cp/Cv, adiabatic exponent; Cp, isobaric specific 
heat; Cv, isochoric specific heat. 
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